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Field-amplified sample stacking (FASS) uses conductivity gradients and resulting
non-uniform electromigration fluxes to effect concentration increases of analyte ions.
For cases where the initial sample concentration is much smaller than the background
electrolyte (BGE) concentration, the ideal maximum concentration enhancement is
equal to γ , the ratio of conductivity of the sample solution to that of the BGE.
However, in practice both molecular diffusion and convective dispersion limit concen-
tration enhancement. We present a theoretical and experimental study of concentra-
tion enhancement using FASS. We model the FASS process as electromigration,
diffusion, and advection of two background electrolyte ions and multiple sample
species across a known initial concentration gradient. Regular perturbation methods
and a generalized Taylor dispersion analysis are used to derive area-averaged species
conservation and electric field equations. The model predicts the spatial and temporal
development of background electrolyte concentration field, electric field, and sample-
ion distribution of the FASS process. We have validated this model using on-
chip FASS experiments. We use an acidified poly(ethylene oxide) (PEO) coating to
minimize dispersion due to electro-osmotic flow (EOF), and thereby evaluate the low-
(but finite) dispersion regime of most interest. We have used CCD-based quantitative
epifliuorescence imaging to quantify unsteady concentration fields and validate the
model. This experimentally validated model is useful in developing optimal designs
of sample stacking assay devices.

1. Introduction
Sensitivity to low analyte concentrations is a crucial challenge in the development of

robust miniaturized bioanalytical devices. Field-amplified sample stacking (Burgi &
Chien 1991) is a promising method of achieving increased sensitivity for on-chip
assays in a scheme that is easily integrated with electrophoretic separation techniques
(Jung, Bharadwaj & Santiago 2003; Yang & Chien 2001). FASS is typically used as
a preconcentration step that occurs prior to the electrophoretic separation of analyte
ions. In the first phase of such experiments, sample ions are preconcentrated using
heterogeneous electrolyte solutions. In the second phase, the concentrated analyte is
subjected to electrophoretic separation in a homogenous electrolyte solution. Such
experiments have been performed using microchips by Yang & Chien (2001) and
Lichtenberg, Verpoorte & Rooij (2001). Our focus, in this paper, is the analysis of the
preconcentration step involving FASS. The design and optimization of the second step
of electrophoretic separation process in homogenous electrolytes has been described
by Bharadwaj, Santiago & Mohammadi (2002).
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The transport phenomenon associated with FASS is in general a complex coupling
of convective-diffusion, electrostatics, and electrokinetics along with the unsteady
effects associated with the response of the electrical double layer to varying bulk ion
concentrations. The detailed understanding of the process dynamics is important for
optimization of high-sensitivity systems. Bier et al. (1983) developed a comprehensive
mathematical model to study a variety of electrophoretic processes using numerical
simulations. However, effects of electro-osmotic flow (EOF) were not taken into
account in their work. The effects of EOF on stacking and separation are very
important to studies of FASS as even slight EOF couples with axial conductivity
gradients to generate internal pressure gradients. These internal pressure gradients
disperse the sample and thereby limit the practically achievable concentration
enhancement. Burgi & Chien (1991) developed a simple algebraic model to study
the effects of dispersion on stacking efficiency. In their model, the classic Taylor
dispersion coefficient (Taylor 1953) was used to quantify dispersion due to non-
uniform EOF. More recently, Sounart & Baygents (2001) developed a general multi-
component model for electro-osmotically driven separation processes. They performed
two-dimensional numerical simulations to study the effect of electro-osmosis on the
concentration distributions in FASS. Their simulations demonstrate that in a frame
of reference moving with the bulk flow velocity, the velocity field exhibits regions of
recirculating flow in the vicinity of the conductivity gradients. Their results show that
the recirculating flow can drastically reduce the efficiency of sample stacking. For
high-sensitivity applications, dispersion due to EOF mismatch should be minimized.
One approach for dispersion reduction is suppression of EOF by coating channel
walls with water-soluble polymers (Horvath & Dolnik 2001). Yang & Chien (2001)
and Jung et al. (2003) have performed FASS under suppressed EOF conditions to
achieve 100 and 1000 fold signal increase respectively.

In this paper we describe experimental and theoretical investigation of FASS
dynamics. Our approach for quantifying dispersion effects is to combine area-
averaged convective diffusion equations with regular perturbation methods to provide
a simplified set of equations for this complex process. Such simplified models provide
useful insight into the physics of the process and lead to the identification of key
parameters that can be used to develop optimization strategies for experiments. These
models also provide a method of achieving computationally efficient calculations that
are useful to optimization and design efforts. We use full-field epifluorescence imaging
to quantify the spatial and temporal distribution of unsteady concentration fields in
FASS and to validate our model.

The paper is organized as follows. In the next section the physical principle behind
FASS and the general governing equations are described. We then describe analytical
and numerical models for FASS dynamics. The analytical model describes the non-
dispersive electromigrational dynamics of three-ion FASS, and the semi-analytical
dispersion model encompasses a generalized Taylor dispersion analysis that includes
the effects of molecular diffusion and advective dispersion. Finally, we describe the
experimental results and their comparison with the mathematical model.

2. Theory
The principle behind field-amplified sample stacking (FASS) is shown schematically

in figure 1(a). An axial gradient in ionic conductivity (and therefore electric field) is
achieved by preparing the sample in an electrolyte solution of lower concentration
than the background electrolyte (BGE). Upon application of an axial potential
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Figure 1. (a) Schematic showing FASS of anionic species in the absence of EOF. A gradient
in the background electrolyte ion concentration is established with the sample in the low
conductivity zone. Upon application of an electric field, the axial gradient in conductivity
results in an electric field gradient. Since area-averaged current density is uniform along the
axis of the channel, the low conductivity section is a region of high electric field, and the
region of high conductivity contains relatively low electric field. As sample ions exit the high
field/high electrophoretic velocity region and enter the low velocity region, they locally
accumulate and increase in concentration. (b) Stacking in the presence of EOF. Gradients
in conductivity generate axial variation in electric field and electro-osmotic mobility. The
system generates internal pressure gradients that tend to disperse sample.

gradient, the sample region acts as a high-electrical-resistance zone in series with the
rest of the channel and a locally high electric field is generated within the sample zone.
Under the influence of electric field, sample ions migrate from the high to low drift
velocity region. This leads to a local accumulation or ‘stacking’ of sample ions near
the interface between regions of high and low conductivity. This stacking increases
sample concentration and results in an increased signal. (Note that, in the absence of
a conductivity gradient, a spatial gradient in mobility would also work.) The process
depicted in figure 1(a) is for an idealized case where diffusion and advection are
neglected. Figure 1(b) shows a more realistic system where finite electro-osmotic flow
is present. The gradient in the electrolyte concentration required for stacking leads to
a gradient in electric field and electro-osmotic mobility. This causes a mismatch of
electro-osmotic velocity and hence generation of a pressure gradient (consistent with
the continuity constraint). The pressure gradient tends to disperse the concentration
fields and thereby lower the efficiency of stacking.

2.1. Problem formulation

In this section we describe the general governing equations for the evolution of ionic
species in an FASS process at an single electrolyte–electrolyte interface (figure 1).
The single interface configuration models the field-amplified sample injection (FASI)
(Chien & Burgi 1991) and the large-volume sample stacking (LVSS) (Chien & Burgi
1992) techniques used in capillaries and microchip-based assays. We consider a system
of N +2 fully ionized ions. Ions A and B refer respectively to a cation and anion which
represent the background buffer ions. We define CS,j to be the concentration of the
j th sample ion in a population of N sample ions. For dilute electrolyte solutions, the
flux contributions from molecular diffusion, electromigration, and convection can be
linearly superposed and the species conservation equation can be written as (Probstein
1994)

∂Ci

∂t
+ u · ∇Ci = −ziνiF∇ · (Ci E) + Di∇2Ci, i = A, B, Sj . (2.1)
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Here, Ci is the concentration of ionic species i (e.g. CA refers to concentration of
buffer cation A), Di , is the molar diffusivity of species i, νi is the electromigration
mobility, zi is the valence number, F is Faraday’s constant, u is the fluid velocity, and
E is electric field.

In electrokinetic flow physics, applied electric fields couple with conductivity
gradients (as in FASS) and in lead to the generation of net charge in the bulk liquid.
However, this charge density is negligible compared to the total background ion
concentration. We can therefore assume that the solution is approximately electrically
neutral everywhere except in the electrical double layer, so that

zACA + zBCB +

N∑
j=1

zS,jCS,j ≈ 0. (2.2)

This approximation is discussed in detail elsewhere (Probstein 1994; Lin et al. 2003).
The low-Reynolds-number microchannel flows of interest here are described by the

Stokes equations of motion with an additional term for bulk charge density of the
form

∇P = µ∇2u + ρE E; ∇ · u = 0 (2.3)

where µ is the fluid viscosity and ρE is the volume charge density. The charge density
term in the momentum equation can in general describe electric body forces both
within the electrical double layer and in the bulk liquid (outside of the double layer).
We shall describe each of these two flow regions in order.

Outside of the double layer, the term ρE E in the momentum equation accounts
for Columbic body forces associated with net charge in the bulk liquid. For electro-
osmotic flows (and typical FASS systems) this force density can be shown to be much
smaller than local internally generated pressure gradients associated with electro-
osmotic mobility gradients in the channel. This approximation is discussed in detail
in the Appendix and leads to a momentum balance of the form ∇p ≈ µ∇2u that will
be applied here to describe the dynamics of the bulk liquid.

The electric body force within the electric double layer gives rise to a thin boundary
layer supporting high shear stress near the wall. In typical electro-osmotic flows in
microchannels, the characteristic double layer thickness (the Debye length), λd , is much
smaller than the channel depth, and EOF can therefore be modelled as bounded by
a slip surface which is parallel to and within a few Debye lengths of the wall. This
treatment of the double-layer physics results in a boundary condition where slip
velocity is everywhere proportional to local electric field (and local zeta potential),
but which can also support a finite shear stress. This approximation is described
in detail by Santiago (2001). In this approach, the electrical double layer need not
be treated in detail and the physical forces within the electrical double layer can
be replaced by a slip surface with a local velocity of the form that is everywhere
proportional to local field and local zeta potential:

uslip = −εoεrζ (x, t)Ex(x, t)

µ

∣∣∣∣
y=±d

. (2.4)

where εo is the permittivity of free space and εr is the relative permittivity. Santiago
(2001) describes the conditions for this approximation. This relation can be thought
of as a Helmholtz–Smoluchowski equation slightly generalized to the case of non-
uniform fields and zeta potential.
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Zeta potential, ζ , is in general a function of local ionic concentration and pH
(Hunter 1981; Scales, Grieser & Healy 1992) In typical FASS experiments, pH can
be assumed to be constant as chemical buffers with sufficiently high concentrations
are typically used. We use the following model for the concentration dependence of
the zeta potential:

ζ = aCb. (2.5)

The exponent and pre-factor depend on the chemistry of the channel surface and
the electrolyte solution. A typical range of the exponent is between −0.2 and −0.3
(Scales et al. 1992; Yao et al. 2003; Sadr et al. 2004) In this study, we assume a value
of −0.2 for the theoretical calculations. FASS dynamics in the flow regimes explored
here have only a weak dependence on this parameter.

The boundary conditions on concentration and potential field are the following:

CA(x = −L, t) = γCAo; CA(x = L, t) = CAo;
∂CA

∂y

∣∣∣∣
y=±d

= 0,

CS,j (x = −L, t) = 0; CS,j (x = L, t) = CS,jo;
∂CS,j

∂y

∣∣∣∣
y=±d

= 0,

φ(x = −L, t) = φo; φ(x = L, t) = 0;
∂φ

∂y

∣∣∣∣
y=±d

= 0.




(2.6)

Now, let sS, sB be the characteristic length scales over which we have significant initial
sample and buffer concentration gradients respectively. For channel lengths much
larger than the characteristic interface length sS , we can assume the following initial
conditions:

CA(x, t = 0) =
CAo

2
((1 + γ ) + (1 − γ )erf(x/sB)),

CS,j (x, t = 0) =
CS,jo

2
(1 + erf(x/sS)).


 (2.7)

Here γ is the ratio of concentration of buffer ions in the high and low conductivity
regions, CAo is the buffer-ion concentration in the low-conductivity region, and CS,jo

is the initial sample ion concentration. These initial conditions refer to FASS across
a single electrolyte–electrolyte interface as depicted in figure 1. The single interface
configuration models the FASI (Chien & Burgi 1991) or LVSS (Chien & Burgi 1992)
processes used in capillary-based systems. Yang & Chien (2001) and Jung et al.
(2003) have also used a similar single electrolyte–electrolyte interface for microchip-
based FASS applications. The error function profile is suggested by the solution
of a simple one-dimensional diffusion solution across an initial sharp boundary, and
approximates the initial conditions of a FASS experiment (prior to the application of a
stacking/electrophoretic separation electric field). The boundary and initial condition
for the buffer ion, B , is then fixed by the electroneutrality constraint.

The set of PDEs (equations (2.1), (2.2) and (2.3)) is coupled and strongly nonlinear
and thus general analytical solutions are difficult. For example, note that the boundary
condition on velocity is unsteady and coupled to the evolving, unsteady concentration
field through the dependence of zeta potential on local ion density. In the next section
we discuss simplifications of these general equations that enable tractable solutions
and shed light on the key physical mechanics of dispersion.
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3. Analytical model for ideal dynamics
FASS is essentially an electromigrational phenomenon and thus we first consider

a model based purely on unsteady electromigration of two BGE ions (A+, B−)
and one sample ion (C−). This idealization helps describe the basic wave-like
propagation and steepening dynamics associated with FASS and can be interpreted
as a study of conditions ideal for stacking. Notable past work in this area includes
the seminal work of Mikkers, Everaerts & Verheggen (1979). They developed a one-
dimensional model based on Kohlrausch’s regulating function (Kohlrausch 1897) to
study concentration distributions during electrophoresis. They presented an analytical
solution for the asymptotic (long-time) concentration distribution for the case of pure
electromigration, neglecting diffusion and advection. Our model is similar to that of
Mikkers et al. (1979) but with the distinction (and associated generalization) that we
focus on both the short-term and long-term behaviour of the FASS concentration
field and that we are here interested in the stacking dynamics across a single interface
in the ionic concentration distribution of the BGE. We assume that the concentration
varies only along the axial direction. A steady bulk current density (total current per
unit channel cross-sectional area), jo, is applied in the axial direction. Under these
assumptions the simplified governing equations are

∂Ci

∂t
= −ziFνi

∂

∂x
(CiE); i = A, B, C (3.1)

and ∑
ziCi = 0. (3.2)

These coupled and nonlinear equations govern the concentration and electric field
distribution. After algebraic manipulation, equations (3.1)–(3.2) can be reduced to the
following:

E(x, t) =
jo

σ (x, t)
. (3.3)

Here, σ (x, t) = F 2
∑

z2
i νiCi , is the electrical conductivity distribution. Further, the

following relation can be obtained:

∂(pCA(x, t) + qCC(x, t))

∂t
= 0 ⇒ pCA(x, t) + qCC(x, t) = f (x) (3.4)

where p = zA − zB(νB/νA) and q = zC − zB(νB/νC). The numerical value of f (x)
is determined, for all times, by the initial conditions. This function is analogous to
Kohlrausch’s regulating function mentioned earlier.

Finally, the sample ion distribution is governed by

∂CC

∂t
= −zC

jo

F

∂

∂x

(
νCCC

zAνAf (x) + CCh

)
(3.5)

where h = (zCνC − zBνB)(zC − zA(νA/νC)).
The conservation equation (3.5) for sample C is a nonlinear wave equation where

the wave velocity depends on the concentration distribution. This is clearer when we
apply the following variable transformation:

φ ≡ CCνC

zAf (x)νA + CCh
(3.6)
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Figure 2. Plot of concentration profiles during stacking across a single interface. The dotted
curve represents the initial sample-ion profile. The peak intensity increases in time until a
saturation value equal to γ is achieved. The variance of the stacked sample ion also increases
with time as sample accumulates in the high-conductivity region. The applied current density
is 1500A m−2, γ = 10, sS = 50 µm, CAo/CCo = 1000 and the time between successive plots is
75 ms.

so that equation (3.5) reduces to

φt +
jozcνA(νC/νA − hφ)2

zAνCf (x)F
φx = 0. (3.7)

This PDE is solved analytically using the method of characteristics. The characteristics
are of the form ∫

f (x) dx − jozcνA(νC/νA − hφ)2t

zAνCF
= C1 (3.8)

and

φ = C2. (3.9)

Due to the nonlinearity of the problem, the analytical solution is implicit but can be
easily developed along the characteristics:

φ = G

(∫
f (x) dx − jozcνA(νC/νA − hφ)2t

zAνCF

)
(3.10)

where the function G is determined by the sample ion initial condition.
In figures 2–5 we consider results from the electromigration model. For the results

shown in figures 2–5, the absolute mobility value of all the three ions is equal to
5.2 × 10−8 m2 V−1 s−1. Figure 2 shows the concentration profiles of the sample-ion
solution as a function of position and time. The corresponding electric field profiles
are plotted in figure 3. As in most FASS situations, we consider a case where the
BGE-ion to sample-ion concentration ratio is large (set equal to 1000 here). Due to
this high value of the initial BGE-to-sample-ion concentration ratio, the electric field
distribution in the channel is nearly constant. The relatively high-concentration BGE
ions govern the background conductivity and follow binary electrolyte dynamics.
This aspect of the solution will be exploited in the next section to develop a regular
perturbation analysis of the general governing equations for the case of sample ion
concentrations much lower than the concentrations of the BGE.
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Figure 3. Electric field profiles under the same conditions as the plot in figure 2 and for a
total evolution time of 0.825 s. The electric field distribution in nearly time-invariant.
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Figure 4. Effect of current density on the rate of concentration increase. The parameter
values for the curves are as in figure 2.

In this idealized, hyperbolic case of FASS, the high field inside the sample region
drives a large electromigration flux of negatively charged sample ions into the lower
electric field region. The flux of ions away from the interface (on the left-hand side of
the interface within the high-conductivity region), however, is relatively small. There
is therefore a local accumulation of sample ions in the region of the interface. The
sample concentration increases until the following flux balance is achieved:

zCFνCCCE|S = zCFνCCCE|BGE (3.11)

or
CStacked

CInitial

=
ES

EBGE

= γ. (3.12)

The sample-ion distribution develops as a travelling wave with peak height increasing
in time until the concentration enhancement reaches a maximum value of γ . Due
to the nature of the single-interface initial conductivity gradient (and of the initial
sample concentration) the variance of the stacked sample increases indefinitely with
time. Figure 4 shows the effect of current density, and therefore electric field, on
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Figure 5. Concentration increase versus time as a function of γ for a current density of
1500 A m−2, sS = 50 µm, and CAo/CCo = 1000. Inset: data scaled as suggested by the control
volume analysis.

the stacking dynamics. The parameter, CC,max , is the maximum value of sample ion
concentration at a given time step. The electric field magnitude does not affect the
maximum concentration achieved, but the rate of stacking is proportional to electric
field magnitude. Figure 5 shows the effect of γ on the rate of concentration increase
given a fixed current density. The concentration increases roughly exponentially at
first and then saturates at a value set by γ . The time to achieve the theoretical
maximum concentration enhancement is directly proportional to γ .

We can use a simple control volume analysis to derive an approximate solution
to the stacking dynamics. A control volume is defined such that its left and
right boundaries are well away from the BGE interface region and the region of
accumulated sample. A mass balance yields

dCC

dt
=

FjozC

σosS

(
CCo

− CC(t)

γ

)
(3.13)

where the left-hand side is accumulation and the right-hand side is the rate of
influx minus the rate of outflux. Rearranging this relation and integrating over time,
a closed-form solution can be derived for the evolution of peak concentration as
follows:

CC(t)/CCo
− 1

γ − 1
= 1 − exp

(
−joνCFzC

sSσoγ
t

)
. (3.14)

The normalization on the left-hand side of this expression can be interpreted as the
efficiency of the stacking process. This relation explicitly shows that the relevant time
scale of this process is proportional to γ and of the form

tscale ∼ sSσoγ

joνCFzC

. (3.15)

For a given current density, therefore, longer analysis time is required to achieve
higher concentration enhancement. We have used the above scaling to replot the data
shown in figure 5. The inset shows that the collapse of the data is fairly good although
not perfect.
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4. Dispersion model for FASS
4.1. Regular perturbation analysis

The electromigration model developed above provides a description of the ideal FASS
dynamics in the absence of dispersive forces. Next, we develop a model to investigate
the effects of molecular diffusion and convective dispersion on the performance of
practical FASS systems. The general set of PDEs is coupled and strongly nonlinear.
However, since the concentration of sample ions is much smaller than the buffer
ions (typically µM sample-ion concentration or less versus order 1 mM buffer-ion
concentration) we employ a regular perturbation technique to decouple the buffer-
and sample-ion concentration fields. We define the expansion parameter as the ratio
of the initial sample- and buffer-ion concentration in the low-conductivity region:

ε =
CS,jo

CAo

. (4.1)

Typical values of this parameter are order 10−3 or less. The dependent variables in
the problem, Yi , are expanded as

Yi = Y 0
i + εY 1

i + ε2Y 2
i + · · · . (4.2)

These series expansions are substituted for the variables in the governing equations (i.e.
CA, CB, CS,j , E, and u) and terms of equal power in ε are equated. The zeroth-order
equation set is then

∂C0
A

∂t
+ u0 · ∇C0

A = D∇2C0
A; D =

zAνADB − zBνBDA

zAνA − zBνB

, (4.3)

C0
B = −C0

A(zA/zB), (4.4)

C0
S,j = 0; j = 1 : N, (4.5)

(zAνA − zBνB)F∇ ·
(
C0

A∇φ0
)

+ (DA − DB)∇2C0
A = 0, (4.6)

∇p0 = µ∇2u0; ∇ · u0 = 0,

u0
slip = −εoεrς

0E0
x

µ

∣∣∣∣
y=±d


 (4.7)

At zeroth order, the sample-ion concentration is negligible and thus the buffer
ions follow binary electrolyte dynamics as described in equation (4.3). The detailed
derivation of the effective diffusion coefficient, D, is documented elsewhere (Probstein
1994). The buffer ions control the electric field distribution as dictated by the
conservation of current equation (4.6). The first-order sample-ion distribution is
given by

∂C1
S,j

∂t
+ u0 · ∇C1

S,j = zS,j νS,jF∇ ·
(
C1

S,j ∇φ0
)

+ DS,j ∇2C1
S,j . (4.8)

By virtue of their small concentration, sample ions act as a ‘passive scalar’ in the
electric and velocity field set up by the buffer ions. Note that Levich (1942) has also
discussed a similar simplification of species conservation equations in the context of
electrochemical processes at electrodes. The concentration distribution of individual
sample species can be calculated independently of the other (low-concentration)
sample species using equation (4.8). The overall electrophoregram can then be
generated by linear superposition of each sample species concentration field. As
described in § 6, our approach can therefore be used to calculate stacking and
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separation dynamics of multiple sample ions. The solution to these zeroth- and first-
order problems are explored below with the aid of an area-averaging approach that
yields solutions directly comparable to experimental observations.

4.2. Dispersion calculation via area averaging

In most electrophoretic experiments, the quantity of practical interest is the cross-
sectional-area-averaged concentration distribution of sample ions. This quantity is,
for example, proportional to the measured signal intensity of line-of-sight optical
integrators such as point-wise fluorescence detectors, transmitted-mode absorption
detectors, and width-averaged electrophoregrams from CCD arrays. This signal
determines the key detectability constraints of electrophoretic separations (Bharadwaj
et al. 2002). In this section, we therefore develop cross-sectional-area-averaged
transport equations applicable to FASS problems. The concept of cross-section
averaging of governing equations for dispersion calculations was first described
by Taylor (1953) and further established by Aris (1956). Another example is the
work of Saville (1990) who used Taylor dispersion analysis to study the effect
of a unidirectional and unvarying velocity profile on the structure of steady
isotachophoresis boundaries.

Brenner & Edwards (1993) have developed a formal generalized Taylor dispersion
theory that extends the Taylor-dispersion-type analysis to a much broader class of
dispersive phenomena than the Poiseuille flow dispersion analysis investigated by
Taylor. One restriction on Brenner’s generalized Taylor dispersion analysis is that the
constitutive equations should be linear with respect to concentration of the scalar. The
governing equations for FASS are nonlinear and hence direct application of generic
analysis is not possible. Our approach for quantifying dispersion effects is to use
area averaging with order-of-magnitude estimates to obtain cross-section-averaged
quantities. Past work pertinent to the present study includes that of Stone & Brenner
(1999) and Sauber, Locke & Arce (1995). Stone & Brenner applied area averaging
together with order-of-magnitude estimates and formal generalized Taylor dispersion
theory to calculate effective dispersion coefficient for flows with streamwise variations
of mean velocity. Sauber et al. employed area-averaging techniques to study the effects
of axial and orthogonal electric fields on solute transport in Poiseuille flow.

In the next four subsections, we apply an area-averaging approach to the coupled
convective diffusion/electromigration problem of FASS. We describe the simplification
and solution approach to the velocity field, the buffer-ion equation, the potential field,
and the ion concentration field. We then present a non-dimensionalization and scaling
of the problem and summarize our method of solution.

4.2.1. Velocity field

We consider a rectangular-cross-section channel of length 2L, depth 2d and width
2w. The channel is assumed to be long and thin, L/d � 1, with small depth-to-width
aspect ratio, d/w � 1. This is a simplified description of a type of wide/shallow
microchannel geometry found in many on-chip electrophoresis devices. (Note that
a similar solution method can be applied readily to the problem of cylindrical
channels and other cross-sectional area shapes provided solutions of velocity fields are
available.) The velocity field is coupled to the buffer-ion concentration only through
the wall boundary condition. The unsteady forces associated with the development of
the unsteady concentration field are neglected so that we consider only a quasi-steady
Stokes equation formulation of the form of equation (2.3). Specifically, we consider
the case where the Reynolds number based on electro-osmotic flow bulk velocity and
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channel depth is small as is the product of Reynolds and Strouhal numbers (Santiago
2001).

The Stokes equations with slip condition can be solved analytically using finite
Fourier transforms. Andersen & Idol (1985) have described such a solution for
electro-osmosis in a cylindrical pore with non-uniform surface charge. Here, we
perform a similar analysis in a two-dimensional rectangular-cross-section channel
with non-uniform axial field and surface potential. The analysis presented here is
valid in the limit L/d → ∞ and d/λd → ∞. In the calculations reported in this

section, the cross-section-averaged quantities are defined as 〈· · ·〉 = (2d)−1
∫ d

−d
. . .dy.

The stream function formulation is used for the Stokes equation:

∇4ψ = 0. (4.9)

This equation is solved using finite Fourier transforms and the solution is

ψ = ψ(y, 0) + 2

( ∞∑
m=1

ψC(y, m) cos(αmx) + ψS(y, m) sin(αmx)

)
(4.10)

where

αm =
mπ

L
. (4.11)

An overbar denotes the cosine and sine transforms:

ψC(y, m) =
1

2L

∫ L

−L

ψ(y, x) cos

(
mπ

L
x

)
dx,

ψS(y, m) =
1

2L

∫ L

−L

ψ(y, x) sin

(
mπ

L
x

)
dx.


 (4.12)

The analysis results in the following velocity profile:

ux(x, y, t) = 〈u〉 +

(
3

(
y

d

)2

− 1

) ∞∑
m=1

uC(m, t) cos(αmx) + uS(m, t) sin(αmx),

uy(x, y, t) = y

((
y

d

)2

− 1

) ∞∑
m=1

−αmuC(m, t) sin(αmx) + αmuS(m, t) cos(αmx).




(4.13)

The slip-velocity transforms are defined as

uC(m, t) =
1

2L

∫ L

−L

uslip(x, t) cos(αmx) dx,

uS(m, t) =
1

2L

∫ L

−L

uslip(x, t) sin(αmx) dx.


 (4.14)

Following the work of Andersen & Idol (1985) the area-averaged bulk velocity, can
be expressed as an axial integral of the slip velocity:

Ubulk = 〈u〉 =
1

2L

∫ L

−L

uslip(x, t) dx. (4.15)

The axial velocity has two components: the bulk average velocity, 〈u〉 î , and the

deviation velocity, u − 〈u〉 î . The bulk velocity component simply convects the solute

downstream without dispersion. The unsteady secondary flow, u − 〈u〉 î , varies both
in the transverse and streamwise directions and causes dispersion of the solute.



Dynamics of field-amplified sample stacking 69

–1.0 –0.5 0 0.5 1.0

–1.0 –0.5 0 0.5 1.0

–1.0

–0.5

0

0.5

1.0

(a)

(b)

–1.0

–0.5

0

0.5

1.0

x

y

y

Figure 6. Instantaneous FASS vector fields. (a) Vector field in a reference frame stationary
with respect to the laboratory showing the two-dimensional transition region between
favourable and adverse pressure gradients. (b) Vector field in a reference frame moving
with the bulk average velocity. This secondary flow pattern leads to dispersion of the sample
ions. The parameters used for this plot are Pe = 100, γ = 5, α = 1, and δ = 10. In both
cases, the centre of the buffer-ion concentration gradient (i.e. the inflection point in the axial
conductivity profile) coincides with x = 0.

Figure 6 shows an instantaneous velocity vector field for the initial conditions
given by equation (2.7). Away from the interface, favourable and adverse pressure
gradients are observed in the high- and low-conductivity regions, respectively. Near
the interface, a two-dimensional transition region exists over which the pressure
gradient changes direction. This two-dimensional region occupies a region of the
channel with a length on the order of sB . For times shorter than the characteristic
advection time (t � L/Ubulk) and sharp gradients (sS/L � 1), the axial integrals of
velocity in equations (4.14) and (4.15) will vary slowly, and hence these axial integrals
can be assumed to be constant. Thus, the velocity profile can be assumed quasi-steady
and expressed as

ux(x, t) = 〈u〉 +

(
3

(
y

d

)2

− 1

) ∞∑
m=1

uC(m, t = 0) cos(αm(x − 〈u〉t))

+ uS(m, t = 0) sin(αm(x − 〈u〉t)) (4.16)

and

uy(x, t) = y

((
y

d

)2

− 1

) ∞∑
m=1

−αmuC(m, t = 0) sin(αm(x − 〈u〉t))

+ αmuS(m, t = 0) cos(αm(x − 〈u〉t)) (4.17)

where

〈u〉 =
1

2L

∫ L

−L

uslip(x, t = 0) dx (4.18)
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and all axial integrals of slip velocity are based on initial conditions. This important
approximation simplifies the nonlinear coupling between the velocity field and the
concentration distribution and facilitates a dispersion analysis.

In the next part of the analysis, we will assume that the effect of transverse velocity
on axial dispersion is negligible, which implies that axial dispersion is predominantly
due to axial velocity components. That is, although transverse velocities exist, they
do not contribute strongly to the development of the area-averaged concentration.
Note that this assumption, although useful and accurate as we shall see, can probably
be relaxed by carrying out a dispersion analysis for the two-dimensional velocity
field using the formal generalized Taylor dispersion theory described by Brenner &
Edwards (1993) under the current assumptions.

4.2.2. Averaged buffer ion equation

Under the assumptions described above, the buffer-ion concentration field evolves
according to the following convective–diffusion equation:

∂C0
A

∂t
+ u0

x(x, y)
∂C0

A

∂x
≈ D

[
∂2C0

A

∂x2
+

∂2C0
A

∂y2

]
. (4.19)

Next, we carry out a dispersion analysis by substituting the following:

C0
A(x, y, t) = C

0

A(x, t) + C ′0
A (x, y, t),

u0
x(x, y) = 〈u〉0 + u′0

x (x, y, t),

}
(4.20)

where the barred quantities are the cross-section-averaged variables and the primed
quantities are deviation variables.

The deviation term for axial velocity is

u′0
x (x, y, t) =

(
3

(
y

d

)2

− 1

) ∞∑
m=1

u 0
C(m, t = 0) cos(αm(x − 〈u〉0t))

+ u 0
S (m) sin(αm(x − 〈u〉0t)). (4.21)

After substituting equation (4.20) in equation (4.19) and expanding, we have

∂C
0

A

∂t
+

∂C ′0
A

∂t
+ 〈u〉0 ∂C

0

A

∂x
+ 〈u〉0 ∂C ′0

A

∂x
+ u′0

x

∂C
0

A

∂x
+ u′0

x

∂C ′0
A

∂x
= D

[
∂2C

0

A

∂x2
+

∂2C ′0
A

∂x2
+

∂2C ′0
A

∂y2

]
.

(4.22)

Next, we take the cross-section average of this equation and the only non-zero compo-
nents are

∂C
0

A

∂t
+ 〈u〉0 ∂C

0

A

∂x
+

[
u′0

x

∂C ′0
A

∂x

]
= D

(
∂2C

0

A

∂x2

)
. (4.23)

To derive an equation for the deviation quantity C ′0
A , subtract equation (4.23) from

equation (4.22) to obtain

∂C ′0
A

∂t
+ 〈u〉0 ∂C ′0

A

∂x
+ u′0

x

∂C
0

A

∂x
+ u′0

x

∂C ′0
A

∂x
= D

[
∂2C ′0

A

∂x2
+

∂2C ′0
A

∂y2

]
+ u′0

x

∂C ′0
A

∂x
. (4.24)

We now simplify equation (4.24) by carrying out an order-of-magnitude analysis. We
are interested in the case where the time scale characteristic of stacking is greater than
the characteristic cross-stream diffusion time, i.e. t � d2/Do. This is analogous to the
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‘long time’ constraint in the classical Taylor dispersion problem. We also assume that
the channel is long and relatively thin, L � d , and recognize that the perturbation
velocity is on the order of the axial-averaged bulk velocity such that u′0

x = (O〈u〉).
Lastly, in the t � d2/Do regime, we can assume that C ′0

A � C
0

A so that

u′0
x

∂C
0

A

∂x
≈ D

∂2C ′0
A

∂y2
. (4.25)

This equation can be integrated to obtain C ′0
A since u′0

x is known (given by equa-
tion (4.21)). This enables evaluation of the square-bracketed term in equation (4.23):

u′0
x

∂C ′0
A

∂x
= −8d2g(x, t)

105D

(
∂

∂x

(
g(x, t)

∂C
0

A

∂x

))
(4.26)

where the function g(x, t) contains the Fourier series expansion and is of the form

g(x, t) =

∞∑
m=1

u 0
C(m, t = 0) cos(αm(x − 〈u〉0t)) + u 0

S (m) sin(αm(x − 〈u〉0t)). (4.27)

Substituting equation (4.26) into equation (4.23) then yields the averaged equation
for the buffer ion:

∂C
0

A

∂t
+ 〈u〉0 ∂C

0

A

∂x
= D

(
∂2C

0

A

∂x2

)
+

8d2g(x, t)

105D

(
∂

∂x

(
g(x, t)

∂C
0

A

∂x

))
. (4.28)

The advective dispersion due to the velocity field is unsteady and varies with the axial
position. The equation for the area-averaged BGE ion B follows simply from the net
neutrality assumption:

C
0

B = −C
0

A(zA/zB). (4.29)

In the next subsection, we shall relate the averaged potential in the channel to the
area-averaged buffer-ion concentration.

4.2.3. Averaged potential field

For the zeroth-order problem, the potential field is given by equation (4.6), which
can be re-written as

∂C0
A

∂x

∂φ0

∂x
+

∂C0
A

∂y

∂φ0

∂y
+ Q

∂2C0
A

∂x2
+ Q

∂2C0
A

∂y2
= 0 (4.30)

where

Q =
DA − DB

(zAνA − zBνB)F
.

Parameter Q has been defined solely to simplify the presentation of the above
equation.

We expand the concentration and potential variables as

C0
A(x, y, t) = C

0

A(x, t) + C ′0
A (x, y, t),

φ0(x, y, t) = φ
0
(x, t) + φ′0(x, y, t).

}
(4.31)
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Upon substituting equation (4.31) into equation (4.30) and expanding, we obtain

∂C
0

A

∂x

∂φ
0

∂x
+

∂C ′0
A

∂x

∂φ
0

∂x
+

∂C
0

A

∂x

∂φ′0

∂x
+

∂C ′0
A

∂x

∂φ′0

∂x
+

∂C
0

A

∂y

∂φ′0

∂y
+

∂C ′0
A

∂y

∂φ′0

∂y

+Q
∂2C

0

A

∂x2
+ Q

∂2C ′0
A

∂x2
+ Q

∂2C ′0
A

∂y2
= 0. (4.32)

As before, we can take the cross-section average of this equation to yield

∂C
0

A

∂x

∂φ
0

∂x
+

[
∂

∂x

(
C ′0

A

∂φ′0

∂x

)]
+ Q

∂2C
0

A

∂x2
= 0. (4.33)

The term in square brackets is then evaluated by subtracting the cross-section-
averaged equation (4.33) from equation (4.32) to obtain

∂C ′0
A

∂x

∂φ
0

∂x
+

∂C
0

A

∂x

∂φ′0

∂x
+

∂C ′0
A

∂x

∂φ′0

∂x
+

∂C
0

A

∂y

∂φ′0

∂y
+

∂C ′0
A

∂y

∂φ′0

∂y

+ Q
∂2C ′0

A

∂x2
+ Q

∂2C ′0
A

∂y2
−

[
∂

∂x

(
C ′0

A

∂φ′0

∂x

)]
= 0. (4.34)

We scale the various terms using L, d, CA, φ, RT/F as the characteristic scales for the
axial coordinate, the transverse coordinate, concentration, potential, and Q. Again
noting that L � d and CA � C ′

A, equation (4.34) simplifies to

∂

∂y

(
C

0

A(x, t)
∂φ′0

∂y

)
=

∂2φ′0

∂y2
≈ 0. (4.35)

This equation is subject to the boundary condition for potential,

∂φ0

∂y

∣∣∣∣
y=±d

=
∂φ′0

∂y

∣∣∣∣
y=±d

= 0.

Since the cross-section average of the deviation variable is zero by definition, we find
that φ′0 = 0. Thus, the averaged equation for the potential field is

∂

∂x

(
C

0

A

∂φ
0

∂x

)
+ Q

∂2C
0

A

∂x2
= 0. (4.36)

In the next subsection, we will use this zeroth-order potential distribution to calculate
the first-order sample-ion concentration distribution.

4.2.4. Sample-ion concentration distribution

The first-order sample-ion concentration field evolves according to a convective-
diffusion–electromigration equation of the form

∂C1
S,j

∂t
+ u0

x(x, y)
∂C1

S,j

∂x
= zS,j νS,jF

[
∂

∂x

(
C1

S,j

∂φ0

∂x

)

+
∂

∂y

(
C1

S,j

∂φ0

∂y

)]
+ DS,j

[
∂2C1

S,j

∂x2
+

∂2C1
S,j

∂y2

]
. (4.37)

As before, we substitute the averaged and deviation variables for concentration and
potential field and carry out an analysis involving averaging and order-of-magnitude
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estimates to obtain the following one-dimensional equation for average sample-ion
concentration:

∂C
1

S,j

∂t
+ 〈u〉0

∂C
1

S,j

∂x
= zS,j νS,jF

[
∂

∂x

(
C

1

S,j

∂φ
0

∂x

)]

+ DS,j

(
∂2C

1

S,j

∂x2

)
+

8d2g(x, t)

105DS,j

(
∂

∂x

(
g(x, t)

∂C
1

S,j

∂x

))
. (4.38)

Together equations (4.28), (4.29), (4.36), and (4.38) now form a new simplified set of
governing equations for the unsteady area-averaged concentration field of all three
ions, and their coupling to the potential and the velocity field in an FASS process.
As described in the next subsection, a dimensionless form of this set of equations is
helpful in identifying the key dimensionless parameters of the problem.

4.2.5. Dimensionless equations

The variables are made dimensionless as follows:

t =
tEoFνo

sS

, g =
g

−εoεrEoςo/µ
, x =

x

sS

, C =
C

CAo

, D =
D

Do

, E =
E

Eo

, Eo =
φo

2L
.

where νo, ζo, and Do are respectively the characteristic scales for electrophoretic
mobility, zeta potential, and diffusivity, and an underline denotes a dimensionless
quantity. The dimensionless equations are then

∂C
0

A

∂t
+ α〈u〉0 ∂C

0

A

∂x
= D

∂2C
0

A

∂x2

1

Pe
+ α2β2Pe

8g(x, t)

105D

∂

∂x

(
g(x, t)

∂C
0

A

∂x

)
, (4.39)

−
∂
(
C

0

AE
0)

∂x
+

(DA − DB)

Pe(zAνA − zBνB)

∂2C
0

A

∂x2
= 0, (4.40)

∂C
1

S,j

∂t
+ α〈u〉0

∂C
1

S,j

∂x
= DSj

∂2C
1

S,j

∂x2

1

Pe
+ α2β2Pe

8g(x, t)

105DS,j

∂

∂x

(
g(x, t)

∂C
1

S,j

∂x

)

− zS,j νS,j

∂
(
C

1

S,jE
0)

∂x
. (4.41)

where the underlines have been removed for clarity of presentation. The initial condi-
tions in terms of dimensionless quantities are

C
0

A(x, t = 0) = 0.5((1 + γ ) + (1 − γ ) erf(x/δ)),

C
1

S,j (x, t = 0) = 0.5(1 + erf(x)),

}
(4.42)

and the boundary conditions are

C
0

A(x = −L, t) = γ ; C
0

A(x = L, t) = 1,

C
1

S,j (x = −L, t) = 0; C
1

S,j (x = L, t) = 1,

φ
0
(x = −L, t) = 2L; φ

0
(x = L, t) = 0.


 (4.43)

The parameters governing this system of equations are

Pe =
EoνoFs

Do

; α =
−εoεrςo/µ

Fν0

=
νEOF

νEP

; β =
d

sS

; δ =
sB

sS

. (4.44)
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Pe is the electric Péclet number, expressed as the ratio of diffusion time to
electromigration time; α is the ratio of electro-osmosis to electrophoretic mobility;
β is the ratio of channel width to characteristic length scale for the initial sample-
ion concentration distribution; and δ is the ratio of the length scale of the initial
BGE- and sample-ion concentration gradients. As we shall see, once the geometry of
the system is fixed and ss is minimized by an efficient sample injection scheme, the
parameters controlling the rate of stacking and the achievable concentration increase
are Pe, α, and γ . Also, minimally dispersive conditions are associated with low values
of α (i.e. suppressed EOF conditions).

5. Method of solution
The first step in the solution is to solve for the velocity field using the initial

conditions, equation (4.42). Second, the buffer-ion equation (4.39) is solved numerically
using a parabolic PDE solver in Matlab (The Mathworks, Inc., Natick, MA). Once
the buffer-ion concentration distribution is known, the electric field distribution is
calculated by solving equation (4.40) analytically:

E
0
(x, t) =

Q

PeC
o

A

∂C
0

A

∂x
+

2L + (Q/Pe) ln γ

C
0

A

∫ L

−L

dx

C
0

A

. (5.1)

The resulting electric field distribution is then substituted into the sample-ion equation
(4.41) and the sample-ion distribution is computed using the aforementioned PDE
solver.

We have further reduced the (already short) computational time associated with
our solution method by leveraging a simplification suggested by the large value
of L/sS = O(1000). Namely, the axial integrals in equations (4.14) and (4.15) are
calculated analytically by neglecting the contributions from the narrow region where
the gradients in concentration occur.

6. Dispersion model results
The modelling results for the cross-section-averaged background-ion A concen-

tration, electric field, and sample-ion, C, concentration distribution are described in
figure 7(a–c). Figure 7(a) shows how both molecular diffusion and convective dis-
persion disperse the boundary between the high- and low-concentration regions of
the background electrolyte ion A. Because ions A and B are present in concentrations
much higher than the sample ion C, the development of these ions is approximately
the same as the development of two neutral species subject to non-uniform electro-
osmotic flow in the channel and an effective diffusivity. As shown in equation (4.3),
the zeroth-order solution is exactly this type of convective diffusion process. That
is, since background electrolyte ions follow binary electrolyte dynamics, there is no
electromigrational contribution to the concentration distribution. The background
electrolyte establishes the conductivity field which in turn establishes the electric
field distribution (figure 7b). Figures 7(a) and 7(b) also show the translation of the
inflection point in the A concentration profile in the direction of the electro-osmotic
flow. This front translates at a rate equal to the bulk velocity of the system, Ubulk

(related to the axial integral of the slip velocity through equation (4.15)).
Figure 7(c) shows the development of the sample-ion concentration (species C).

The sample ions react passively (and instantaneously) to the background electric
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Figure 7. Predicted evolution of the (a) background electrolyte-ion concentration, (b) electric
field, and (c) sample-ion concentration field. The dotted curves refer to the initial condition.
The dispersion model parameters for these plot are Pe = 60, α = 0.05, γ = 5, β = 2, and δ = 1.
In all cases, multiple curves are shown for times separated by 100 ms.

and velocity fields as determined by the convective-diffusion of the background
electrolyte ions. Electrophoretic flux of the anionic sample species from the region
of low conductivity (high field) to high conductivity (low field) results in a local
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accumulation leading to increased concentration. As expected given our assumptions,
the maximum concentration enhancement factor is equal to γ .

We can validate our numerical scheme and the perturbation model by analysing
the high-Pe limit of the regular perturbation model (equations (4.39)–(4.41)) in the
absence of EOF and comparing it to the analytical solution for a nonlinear, hyperbolic
electromigration process (equation (3.7) solved using the method of characteristics,
MOC). Since the analytical MOC model is valid for the constant current density case,
we solve the dispersion model for the same condition. This comparison between the
dispersive and non-dispersive model is shown in figure 8. First, figure 8(a) shows that
there is excellent agreement between the two approaches in the limit of zero EOF and
infinite Pe. This shows that for small enough values of the parameter ε, the first-order
equation (4.41) is sufficient to accurately predict the spatial and temporal distribution
of the sample-ion concentration.

The regime of applicability of the nonlinear MOC solution can be explored by
systematic variation of Pe and α. These results are shown in figures 8(b) and 8(c) for
the quantity of most interest: the temporal evolution of the peak concentration of
the sample ion. Figure 8(b) shows the case of zero EOF where only Pe is varied by
changing the applied current density, jo. For Pe values of 200 and above, the MOC
solution agrees with the more general dispersion model to within 5 %. Diffusion
processes become critical for lower values of Pe. The case where Pe is sufficiently
large but where advective dispersion is important is explored in figure 8(c). Here we
use a value of Pe = 210 for the dispersion model but vary the value of α between 0
and 0.3. The comparison shows that the MOC solution is accurate to within 10 % in
the high-Pe limit for values of α below 0.1. Higher values of α result in significant
contributions of advective dispersion and the MOC solution is again limited. Lastly,
figure 8(c) shows that for a typical range of ε, between 0.01 and 0.001, the MOC
solution is a weak function of ε. This again confirms that for small values of ε, the
dynamics of the background electrolyte is decoupled from the sample-ion distribution
and the first-order perturbation solution is a good approximation.

In the presence of EOF, the overall drift of anionic sample ions is determined by
the competing effects of EOF (in the direction of the electric field for negative zeta
potentials) and electromigration (in the opposite direction). This competitive nature
of the transport results in the peak migration behaviour shown in figure 9. In this
figure, we plot the location of the stacked analyte peak (the location of Cc,max) as a
function of time for various values of the EOF mobility parameter α. In the absence of
EOF (α = 0), electromigration leads to a drift of the negatively charged sample ions
in a direction opposite to the electric field. In the case of dominant EOF (α = 0.5),
the sample peak is convected in the direction of electric field. In an intermediate
parameter range (near α = 0.14), the peak position trace shows an inflection point.
Initially the motion of the peak is dominated by electromigration and then, as the
conductivity gradient diffuses, EOF advective flux dominates and the peak migrates
in the direction of the electric field.

Next, we consider the effects of diffusive and advective dispersion on concentration
increase as a function of γ for a given duration of stacking. We choose the constraint
of fixed analysis time as we are interested in FASS as a preconcentration step prior to
electrophoretic separation. These fixed-time comparisons help to determine the time
needed to achieve adequate concentration enhancement and the initial condition of
the subsequent uniform-conductivity separation process. Figure 10 shows clearly that
there is an optimum value of γ for a given set of parameters and analysis time.
This result is in contrast to the ideal dynamics presented before, which showed that
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Figure 8. Comparison of the method of characteristiscs (MOC) solution and the regular
perturbation method (RPM) solution for the sample-ion concentration profiles. (a) The spatial
development of sample concentration. The applied current density is 1500 A m−2 and γ = 4.
(b) Effect of current density on the peak concentration versus time. The mobility values used
in this simulation are listed in table 1. The perturbation model results are shown as solid
lines. For the perturbation model calculations: α = 0, β = 1, and δ = 1. (c) Effect of the EOF
parameter α on the peak concentration versus time. MOC results are shown using symbols
and the dispersion model results are represented by lines. The applied current density here is
3000 A m−2, which corresponds to Pe = 210. For the dispersion model calculations: β =1 and
δ = 1.
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Figure 9. Axial location of the sample-ion peak as a function of time for three different
EOF mobilities. The parameters for the model are Pe = 167, γ =9, β =0.7, and δ = 1.27. At
intermediate values of α (near α = 0.14) the location of the peak concentration first moves
against the electric field and then in the direction of the electric field.
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Figure 10. Optimum value of γ for fixed stacking times of 1 s. The parameters for the disper-
sion model are: α = 0.5, β = 2, and δ = 1. For a given analysis time and fixed values of Pe, α,
β , and δ, there is a unique value of γ that provides maximum concentration enhancement.

increasing γ always increases the concentration enhancement (figure 5). This is an
important feature of the model as it gives experimentalists a method of choosing
values of γ to yield optimal signal detections.

The existence of an optimal value of γ can be better understood by considering
the scaling of the parameters of interest. Equations (3.12) and (3.14) (and figure 2)
show that the maximum sample concentration is proportional to γ :

CC,max ∝ γ. (6.1)

In contrast, from equations (2.4) and (2.5), the ratio of the EOF velocity in the
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Figure 11. Effect of EOF mobility parameter α on the rate of concentration increase. The
model parameters here are Pe = 60, γ = 5, β = 2, and δ = 1. The net concentration enhancement
time was fixed at 1 s.

low-conductivity region to the value in the high-conductivity region scales as

UEOF,S

UEOF,B

∼ ςSES

ςBEB

∼ γ 1.2 (6.2)

so that the advective dispersion effects of mismatched slip velocities is negligible for
low γ but then dominates at high γ . A similar scaling observation has also been made
by Burgi & Chien (1991) who discuss the existence of an optimum γ using simple
scaling arguments. They developed an algebraic model for the long-time behaviour of
a finite-length sample plug variance as a function of γ sing a one-dimensional Taylor
dispersion approximation. In contrast to their model, the dynamic model described
here allows quantitative prediction of both temporal and spatial development of the
sample ion, background electrolyte ions, and electric field profiles.

Another important parameter determining the convective dispersion and hence
rate of concentration increase in FASS is α, or the ratio of electro-osmotic
and electrophoretic mobilities. For a typical value of electrophoretic mobility (e.g.
3×10−13 mmol N−1 s−1), α is approximately equal to 2 for glass microchips. Therefore,
the dispersion dynamics of untreated glass chips are well in the advection regime.
However, at least an order of magnitude reduction in electro-osmotic mobility is
possible by adding dynamic surface coatings using neutral water-soluble polymers
(Preisler & Yeung 1996). It is therefore interesting to experimentalists to quantify the
importance of suppressing EOF in determining maximum achievable concentration
increases. In figure 11 we consider the effect of α on the rate of concentration increase.
At short times, the rate of concentration increase is independent of α. The increase
in width of the area-averaged conductivity gradient region due to dispersive effects is,
at short times, negligible and so the dynamics is governed by initial conditions. This
short time can be defined as

t � s2
S

Deff

(6.3)

where Deff is a characteristic scale for the dispersive effects. After this initial
development time, the rate of concentration increase is increasingly governed by
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Figure 12. Optimum value of Pe for a fixed stacking time of 1 s. The parameters for the
dispersion model are α = 0.5, β = 2, and δ = 1. At low Pe, diffusive dispersion dominates and
concentration enhancement suffers. At high Pe, advective dispersion is dominant and again
concentration enhancement suffers. For fixed γ and analysis time, there is a unique, optimal
Pe (e.g. an optimal electric field for a given channel system) which results in maximum
concentration increase.

dispersive effects and various rates of growth are apparent for different values of α.
Note that, even for the case of a ten-fold decrease in electro-osmotic mobility (α = 0.2),
there is significant convective dispersion. This result has important consequences for
the design of microchip-based FASS systems because a slower rate of concentration
increase can adversely affect the amount of sample required per separation as well
as the throughput of the device. To increase the rate of concentration enhancement,
the electric field and thus Péclet number should be increased. Figure 12 describes the
effect of Pe on maximum concentration achievable for a given analysis time. Initially,
increases in Pe are favourable for concentration enhancement. This is due to a reduced
contribution of molecular diffusion which scales as Pe−1. However, as Pe is increased
further the concentration increase slows down and, past a critical Pe, the achievable
concentration begins to decrease. The latter effect is due to the fact that convective
dispersion increases with increasing Pe. Equations (4.39) and (4.41) show that the
dispersion term scales as α2β2Pe. There is therefore an optimum value of Pe for a
given analysis time and fixed values of γ, α, and β . Note that, in practice, the optimum
value of Pe may be somewhat smaller than that predicted by our dispersion model
since we do not account for the effects of Joule heating (Grushka, McCormick &
Kirkland 1989). Joule heating is proportional to the square of the local electric field
and is expected to be important for very high field strengths and relatively large
channels.

Lastly, in figure 13 we consider sample stacking and separation dynamics of three
sample ions. The initial sample concentration profile is described by

CS,j (x, t = 0) =
ε

2
(erf(x) − erf(x − 2h)) (6.4)

where h is the dimensionless width of the sample plug. The buffer-ion initial
concentration is described by equation (2.7). Such a sample–buffer configuration
was used by Jung et al. (2003) to demonstrate 1000-fold signal increase using FASS.
Figure 6 shows that initially there is rapid stacking (accumulation) of the sample ions
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Figure 13. Stacking and separation dynamics of three negatively charged sample species. The
model parameters are Pe = 40, γ = 5, β = 2, α = 0.05, δ = 1, and h = 6. The dimensionless
electrophoretic mobilities of the species are 1, 2, and 3, respectively. The initial dimensionless
concentrations of the sample species are 1/6, 1/2, and 1/3, respectively.

as they exit the low-conductivity region and enter the high-conductivity region. Once
sample ions enter the high-conductivity region, sample stacking ends and ions are
subsequently electrophoretically separated into three distinct peaks. The dispersion
model can be used to optimally design FASS-based electrophoretic separation systems
for analysis of multiple sample species. For example, the model predictions can guide
the location of the detector and width of initial sample plug to ensure adequate
signal-to-noise ratio and resolution.

7. Experimental results and model validation
An inverted epifluorescence microscope (Olympus IX70) equipped with a 10X

objective (Olympus, NA = 0.4) was used for imaging the concentration fields of
sodium fluorescein dye solutions. Illumination from a mercury lamp was spectrally
filtered at the peak fluorescein absorption and emission wavelengths of 485 nm and
535 nm, respectively. Images were captured using a frame transfer intensified CCD
camera (I-PentaMAX, Gen III, Princeton Instruments) with a 512 × 512 CCD pixel
array and 12-bit digitization. Up to 58 frames per second were obtained by imaging
only a 101 × 512 pixel sub-section of the CCD array. The exposure time was set to
10 ms. A low-fluorescence Borofloat glass microchip (Micralyne, Alberta, Canada)
with a staggered-T channel geometry was used for all experiments. The microchannel
width is 50 µm and the centreline depth of the channels is 20 µm. The channels have
the characteristic shape of an isotropic wet etch. The length of the vertical channel is
8 mm and the length of the horizontal channel is 85 mm. The length of the injection
region (the centre-to-centre distance between the two staggered T sections) of this chip
is 100 µm. A high-voltage power supply (Micralyne, Alberta, Canada, 6 KV maximum)
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Figure 14. (a) Schematic of microchip for single interface stacking experiments. Width and
centreline depth of channels were 50 and 20 microns, respectively. (b) Epifluorescence CCD
images showing establishment of initial condition for conductivity gradient and subsequent
stacking across the interface. The sample was anionic 17 µM bodipy dye and the buffer was
HEPES at pH= 7.

was used to control platinum electrode potentials mated to the chip reservoirs. In
the stacking experiments, we used a 78 mM HEPES buffer prepared by titrating
HEPES acid against sodium hydroxide to obtain a pH of 7.2. The solution’s electrical
conductivity was measured at 0.19 S m−1. The low-conductivity sample solution was
prepared by diluting the stock-buffer solution with distilled water. The sample was
17 µM bodipy dye (Molecular Probes) dissolved in diluted buffer. The microchip was
flushed with acidified poly(ethylene oxide) solution to suppress EOF. This acidified
PEO treatment is described by Preisler & Yeung (1996). We used a 0.4 % (w/v)
solution of PEO and filled the chip several hours before experiments in order to
establish a uniform coating. After this surface treatment step, the microchip was
flushed with the HEPES buffer for 5 min at a flow rate of 20 µL h−1 to remove PEO
solution.

CCD images of the fluorophore in the channels were corrected by applying the
following matrix operation to each image:

Icorr =
Iraw − Ibackground

Iflatfield − Ibackground

. (7.1)

In this approach for quantitative imaging, a background image is subtracted from the
raw image and this difference is normalized by the difference between a flatfield and
the background image. The flatfield image was obtained by imaging the microchannel
filled with a homogenous concentration of dye. To compare the two-dimensional
image data with the area-averaged model, the intensity data for the pixel regions of
the microchannel images were averaged along the vertical direction (i.e. the width of
the microchannel) to form one-dimensional, cross-section-area-averaged axial intensity
profiles.

The interface between high- and low-conductivity buffer regions is generated by
applying a vacuum at the north reservoir as shown in figure 14(a). Once a buffer–
buffer interface is established, the vacuum is released and an axial electric field is
applied. Upon application of an axial electric field along the west-to-east direction,
sample stacks at the interface between buffer streams. Figure 14(b) shows images
of the stacking process at selected times. In figure 15, instantaneous images of the
stacking process are shown for a case where EOF was not suppressed. Since the EOF
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Figure 15. CCD images of FASS in an untreated channel with significant EOF mobility. The
images clearly show the development of stacked fluorescein in the favourable-pressure-gradient
region (i.e. the high-conductivity region). The sample was 25 µM fluorescein dye dissolved in
5 mM Borate buffer. The background electrolyte for this particular experiment was 25 mM
Borate buffer (pH=9.2). The electric field in the sample region was 50 V cm−1 and γ = 4.

velocity in all regions is greater than the negative electrophoretic velocity of fluorescein
dye, the stacked region moves in the direction of EOF. The images clearly show the
favourable-pressure-gradient-induced curvature of the stacked ions on the downstream
(left-hand) side of the interface. As described earlier, these pressure gradients act to
disperse sample and reduce the efficiency of FASS. From figure 14(b) and figure 15 the
efficacy of the EOF-suppression method is apparent as the conductivity interface is
nearly stationary and there is negligible pressure-induced curvature of stacked analyte.
Figure 16 shows the temporal development of the spatial concentration distribution
of sample ions. To improve signal-to-noise ratio, the intensity profiles were convolved
with a Gaussian filter. The width of the filter was chosen to be 5 % of the half-width
half-maximum of each of the profiles at each time step. The dynamics of the peak
concentration of these data is shown in figure 17(a, b) for various values of the
electric field in the low-conductivity region, ES , of the channel. Since the length of
the interface region is small compared to the length of the channel, ES is related to
the applied potential along the channel as follows:

ES =
γV

LT (1 + (γ − 1)a)
(7.2)

where V is the applied voltage, LT is the channel length and a is the fraction of
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Figure 16. Measured axial intensity profiles for sample ions. The profiles were obtained by
averaging two-dimensional image intensity data along the width of the channel. The applied
nominal electric field (potential difference divided by channel length) was 588 V cm−1 and
γ = 4. Time between individual profiles is 0.15 s. To reduce image noise, the raw data was
low-pass filtered using a Gaussian kernel with a standard deviation width equal to 5 % of the
half-width of each peak at the half-maximum intensity level (HWHM) at each time step (both
raw data and filtered data are shown above). The sample ions develop as a travelling wave
with peak height increasing in time until the concentration enhancement reaches a maximum
value of γ . Due to the nature of the initial sample concentration distribution, the variance of
the stacked sample increases indefinitely with time.

the channel occupied by the low-conductivity sample. As predicted by the dispersion
model, the peak intensity increases roughly exponentially at first and then saturates
at a maximum achievable concentration enhancement of γ . The rate of concentration
enhancement increases with electric field. For the same electric field, higher γ

conditions require a longer time to achieve maximum concentration enhancement.
Qualitatively this behaviour agrees with the characteristic time scale derived in
equation (3.15) for ideal stacking dynamics.

To quantitatively compare our model predictions with experimental data, we model
the buffer solution as composed primarily of two ions: a sodium cation and a
HEPES. This is appropriate since these ions are the dominant species in the electrolyte
solution and hence govern the conductivity gradient. Typical values of various physical
parameters including the mobilities of sample and buffer ions are listed in table 1.
The mobility of bodipy dye was estimated from the results of Bharadwaj et al. (2002).
The mobility of the HEPES anion was estimated from conductivity measurements
(using the known mobility of the sodium ion). The diffusion coefficients for the buffer
ions were estimated from mobility values using the Nernst–Einstein equation,

Di = RT νi. (7.3)

Parameter sS , the characteristic length scale of the initial sample-ion distribution, was
obtained from fluorescence imaging measurements of the initial sample-ion intensity
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Figure 17. Measured peak concentration versus time for three electric field values. Cases
shown are: (a) γ = 4 and (b) γ = 9. The data represent an average of four to six realizations
for each field strength and γ .

profile. The characteristic length scale of the initial buffer-ion concentration gradient,
sB , can be estimated from that of the sample ion as follows:

sB = sS

√
D

DC

. (7.4)

The only remaining unknown parameter is the electro-osmotic mobility of the
channel walls, and hence the parameter α. The electro-osmotic mobility of the
polymer-coated channel walls is non-uniform and unsteady due to the developing
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Symbol Description Value

ν+
Na Sodium ion electrophoretic 5.2 × 10−13 m mol N−1 s−1

mobility
ν−1

HEPES HEPES ion electrophoretic 2.4 × 10−13 m mol N−1 s−1

mobility
ν−1

Bodipy Bodipy electrophoretic mobility 2 × 10−13 m mol N−1 s−1

νEOF EOF mobility 5 × 10−14 − 5 × 10−13 m mol N−1 s−1

d Channel half-depth 10 µm
w Channel half-width 25 µm
sS Characteristic length scale of the

initial sample-ion distribution 5–40 µm
Eo Applied electric field 200–600 V cm−1

Table 1. Parameters and characteristic values.

concentration gradients in the channel, and experimental measurement of the local,
instantaneous electro-osmotic mobility field in this flow is difficult. We therefore used
the absolute value of the axial-average electro-osmotic mobility as a free parameter
in comparing our model results to experimental results. This value was obtained from
the measurement of the peak location versus time data. Note that this fitting method
merely registers the (slight) motion of the predicted and experimental peak locations
and has a single value for each experiment.

This experimentally determined α value was then used to predict the development
of the full velocity field in the channel and the dynamics of the area-averaged
concentration profiles (including peak concentration values). Figure 18(a–c) shows
comparisons between model predictions and experimentally measured concentration
profiles. Experiments are shown for γ = 4 and 9 and ES values of 379 and 588 V cm−1.
There is very good quantitative agreement between measured area-averaged concen-
tration profiles and the model prediction throughout the time of observation. Note
that, as shown in figure 14(b), for times approaching 1 s the region of high area-
averaged concentration becomes two-dimensional as it enters the staggered-T injection
region of the system (which cannot be captured by our model). The experimentally
determined axial-averaged mobility value for the experiments shown in figure 18 are
0.5 × 10−14, 0.5 × 10−14, and 0.3 × 10−14 mmol N−1 s−1, respectively. These values are
within the range of expected values for PEO-treated glass channels with a buffer pH
of 7 (Preisler & Yeung 1996 ). The model is able to capture important features such
as the development of peak width and the temporal growth of the maximum concen-
tration.

Figure 19 shows a more detailed comparison of model predictions for the temporal
development of the peak concentration and experimental data for three electric fields
and two γ values. The error bars in these figures represent 95 % confidence intervals
obtained from four to six realizations, and are therefore a measure of the high
degree of repeatability of the experiment. The model captures the correct trends for
variations in both γ and electric field. The model predicts maximum concentration
values within 10 % of experiments for all times for the γ = 4 case. For γ = 9, and
electric fields below 300 V cm−1, the model predicts maximum concentration values
within 20 % of the experimental data. However, at γ = 9 and an electric field of
588 V cm−1, the model slightly overpredicts the magnitude of the peak concentration.
This discrepancy is probably due to expected limitations of the model at high values



Dynamics of field-amplified sample stacking 87

–2 0 2 4
0

1

2

3

(a)

(b)

(c)

CC

CC

CC

Model
Experiment

–4 –2 0 2 4 6
0

1

2

3

4

–2 0 2 4
0

1

2

3

4

x

Figure 18. Comparison of model prections and measured concentration profiles. In (a), γ = 4,
Eo = 379 V cm−1, and time between frames was 76 ms. The model parameters are Pe = 55, α =
0.23, β = 0.28, δ = 1.27. In (b), γ = 4, Eo = 588V cm−1, time between frames was 76 ms.
The model parameters were Pe = 59, α = 0.23, β = 0.4, δ = 1.27. In (c), γ = 9, Eo =
588 V cm−1, and time between frames was 68 ms. The model parameters were Pe = 167,
α = 0.14, β = 0.14, δ = 1.27.
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Figure 19. Comparison of model predictions and measured rate of increase of peak
concentration value. (a) Model predictions and measurements for γ = 4 and three electric
field values. The respective model parameters for the low, medium, and high electric fields
are: Pe = 22, α =0.18, and β =0.35; Pe = 40, α = 0.2, and β = 0.38; Pe = 82, α = 0.22, and
β =0.28. (b) Model predictions and measurements for γ = 9 and three electric field values. The
dash-dot, dotted and solid lines refer to the model predictions for applied electric fields of
188, 294 and 588 V cm−1, respectively. The respective model parameters for the low, medium,
and high electric fields are: Pe = 48, α =0.14, and β = 0.16; Pe =77, α = 0.22 and β = 0.15;
Pe =162, α = 0.1, and β = 0.14. In all the model predictions, δ = 1.27.
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Figure 20. Comparison between model and experiment for peak location versus time for
an intermediate α case showing an inflection point. The parameter values for the model
predictions are Pe = 78, α = 0.15, β = 0.15, and δ = 1.27. To reduce effects of peak-locking in
the peak finding algorithm (i.e. to reduce discretization errors), a five-point Gaussian function
was fitted to the data in the region of the intensity peaks and the centroid of this function was
tracked to obtain the peak location data.

of both γ and applied field. For example, in our model development, we assume
convective–electromigration–diffusion dynamics in a purely two-dimensional flow in
a wide, shallow channel (neglecting the influence of sidewalls). In reality, however, the
microchannels in the experiment have a D-shape characteristic of an isotropic etch
with a width to maximum depth ratio of 2.5. In future refinements of this model,
it may be possible to relax this assumption by incorporating more comprehensive
dispersion dynamics. For example, Dutta & Leighton (2001) have investigated the
effect of isotropic-etched microchannel geometries on the dispersion coefficient for
simple pressure-driven flows. Their analysis shows that the dispersion coefficients for
the D-shaped channels can be three to four time larger than those predicted by simple
two-dimensional analysis. Such advective–diffusion effects would be most important
in our flow for large γ values (associated with larger internally generated pressure
gradients) and the large Péclet numbers associated with high electric fields. Another
possible refinement of this model would include dispersive effects due to joule heating
(Grushka et al. 1989) which should also lead to reduction in the rate of concentration
increase.

Lastly, figure 20 shows that the anomalous peak migration behaviour predicted by
the model (see figure 9) is observed within the current experimental parameter range.
At these conditions, the sample peak initially migrates in a direction opposite to that
of the electric field and then reverses direction and begins migration in the direction
of the electric field. As described earlier, this is a manifestation of the competing
effects of electromigration of a negatively charged sample ion in a direction opposite
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to the electric field and advection of the sample via residual electro-osmotic flow in
the direction of electric field.

8. Conclusions
We have formulated an electromigration–diffusion–advection model to investigate

FASS dynamics at an interface between high- and low-conductivity electrolyte
solutions. We used a regular perturbation analysis, using the ratio of sample
and background electrolyte concentration as the expansion parameter, to simplify
the governing equations. The resulting equations are area-averaged to yield a
one-dimensional dispersion model for FASS. The model predicts area-averaged
background electrolyte concentration field, electric field, and sample-ion distribution.
The model can be used to optimize the efficiency of FASS. For example, the model
predicts optimum values of Pe and γ for maximum concentration enhancement,
for a given analysis time. We have performed experiments to measure the unsteady
concentration fields in FASS using a glass microchip. The experiments demonstrate
that an acidified poly(ethylene oxide) (PEO) coating can be used to suppress EOF
in a borosilicate microchip and thereby reduce advective dispersion due to EOF.
Measured concentration profiles in single-interface FASS experiments show that peak
concentration initially increases exponentially with time and then asymptotes to a
maximum concentration enhancement factor of γ . There is very good quantitative
agreement between the model predictions and the experimentally measured unsteady
concentration fields. Finally, we have experimentally and theoretically observed a
regime of peak migration wherein the stacking sample peak migrates first in a
direction opposite to electric field and then reverses direction after a short time. This
behaviour is a result of the competing effect of electromigration of negatively charged
sample ions and convection due to the electro-osmotic flow.

Further improvements to the model can be made by accounting for the three-
dimensional effects of typical D-shaped, wet-etched channel cross-sections. More
sophisticated dispersion analyses of the unsteady three-dimensional velocity field
should extend the predictive ability of the present model.

This work was sponsored by DARPA (Contract Number F30602-00-2-0609) with
Dr. Anantha Krishnan as contract monitor and by an NSF PECASE Award (J.G. S.,
contract number NSF CTS0239080) with Dr Michael W. Plesniak as contract monitor.

Appendix
As described by Lin et al. (2003) and Chen et al. (2005), an electric field applied

parallel to a conductivity gradient leads to an accumulation of net charge in the
bulk liquid regions of an electrokinetic flow field, outside the electric double layer.
This net charge can couple with the applied electric field in the channel and result
in a body force that can introduce vorticity into the bulk flow and destabilize the
flow. Combining Gauss’s law and a relation for the conservation of electromigration
current, this net charge can be approximated as ρE ≈ εE · ∇σ/σ , where σ is ionic
conductivity (Chen et al. 2005; Lin et al. 2003). For the stable-flow, area-averaged
FASS model of interest here, bulk charge density acts as a source of pressure gradient.
In the absence of EOF gradients, this local body force is balanced by viscous stresses
(and associated pressure gradients) which are distributed throughout the length of
the channel. In this appendix we present a brief scaling argument to justify the
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assumption that the effects of electric body forces in the bulk are negligible compared
to pressure gradients due to mismatched electro-osmotic flow for our parameter range
of interest. Assuming one-dimensional conductivity gradients in a long-thin channel,
the distributed pressure gradient resulting from local bulk liquid electric body forces
can be estimated from a global force balance as

dPE

dx
=

1

LT

∫ LT

0

ρEE dx (A 1)

where LT is the total channel length. The charge density can be related to the electric
field using Gauss’s law as ρE = −εoεrdE/dx. Substituting into equation (A1),

dPE

dx
=

1

LT

∫ LT

0

−εoεr

d(E2)

2 dx
dx =

εoεr (E
2(x = LT ) − E2(x = 0))

2LT

. (A 3)

The electric field can be calculated by enforcing conservation of electromigration
current in a system with a step-change in electrical conductivity (Burgi & Chien 1991).
Enforcement of this condition leads to the result that the ratio of the electric fields
in the low- and high-conductivity regions is equal to γ , the high-to-low conductivity
ratio. The distributed pressure gradient due to local bulk charge density is then

dPE

dx
=

εoεr (γ
2 − 1)E2

o

2LT (1 + (γ − 1)a)2
(A 4)

where a is the fraction of channel occupied by the low-conductivity region, and Eo is
applied nominal electric field (applied voltage per unit channel length). The pressure
gradient in the stacked sample region due to an EOF mismatch can be estimated
using continuity and the momentum equation. For a one-dimensional step change in
conductivity, the pressure gradient in the stacked analyte region is simply

dPEOF

dx
=

3Eo(γ − 1)FνEOFµa

2d2(1 + (γ − 1)a)
. (A 5)

The channel depth is 2d , the wall EOF mobility is νEOF, and the fluid viscosity is µ.
Here we assume a uniform electro-osmotic mobility to simplify the analysis. The ratio
of the two pressure gradients is then

Γ =
dPE

dx

/
dPEOF

dx
=

εoεrEo (γ − 1)d2

3FνEOFµaLT (1 + (γ − 1)a)
. (A 6)

Γ is of order 10−4 for typical FASS experiment values with significant electro-osmotic
mobility (e.g. Eo =60 000 V m−1, LT = 0.085 m, νEOF =5 × 10−13 molN−1 m s−1, d =
10 × 10−6 m, γ = 10, εoεr = 7 × 10−10 F m−1 and a = 0.94). Under suppressed EOF
conditions, with an order-of-magnitude reduction in EOF mobility, Γ is of order
10−3. Thus, pressure gradients in the channel due to space charge density can be
neglected in the momentum equation (2.3). This leads to a greatly simplified analysis
of the flow field.
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